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1 Introduction

Physical quantities such as temperature, pressure, density, electric field and magnetic field

are functions of position in that they vary throughout space (and time). A scalar function

defined throughout some region is called a scalar field, while a vector function defined

throughout some region is called a vector field.

2 Gradient and Gradient Operator

The gradient of a scalar function ϕ(x, y, z) is defined by

gradϕ = ∇ϕ =
∂ϕ

∂x
i+

∂ϕ

∂y
j +

∂ϕ

∂z
k,

where i, j and k are unit vectors in the x, y and z-direction, respectively. Note that

∇ϕ, which is often written as gradϕ, is a vector function, and ∂
∂x
, ∂

∂y
and ∂

∂z
are partial

derivative operators with respect to the variable x, y and z, respectively. For example, if

f(x, y, z) = x2yz, then ∂f
∂x

= fx = (2x)yz; that is, differentiating function f with respect

to x only while keeping all other variables fixed.

EXAMPLE

If ϕ(x, y, z) = x2 + 3xyz − y2, determine ∇ϕ at the point P (1,−2, 5).

solution

Gradient of the scalar function ϕ(x, y, z),

∇ϕ =
∂ϕ

∂x
i+

∂ϕ

∂y
j +

∂ϕ

∂z
k

= (2x+ 3yz)i+ (3xz − 2y)j + 3xyk.

Thus, at the point P (1,−2, 5), we have

∇ϕ
∣∣
P
= −28i+ 19j − 6k.
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EXAMPLE

Determine

(1) ∇r3,

(2) ∇(1/r) and

(3) ∇ ln r.

solution

Note that r = r(x, y, z) = xi+ yj + zk and r = |r| =
√
x2 + y2 + z2.

(1) Firstly, we compute

∇
(
r3
)
=

∂

∂x

(
r3
)
i+

∂

∂y

(
r3
)
j +

∂

∂z

(
r3
)
k.

Utilising the chain rule, we obtain for the first term on the right side of the

above expression,

∂

∂x

(
r3
)
=

∂

∂r

(
r3
) ∂r
∂x

= 3r2
∂r

∂x
.

Since r2 = x2+y2+z2, we have upon differentiating both sides (partially) with

respect to the variable x (keeping both variables y and z fixed),

∂

∂x

(
r2
)
=

∂

∂x

(
x2 + y2 + z2

)
⇒ 2r

∂r

∂x
= 2x

⇒ ∂r

∂x
=

x

r
.

Alternatively, since r =
√
x2 + y2 + z2, it follows that

∂r

∂x
=

∂

∂x

(
x2 + y2 + z2

)1/2
=

1

2

(
x2 + y2 + z2

)−1/2 ∂

∂x

(
x2
)

=
2x

2
√
x2 + y2 + z2

=
x

r
.

Similarly,
∂r

∂y
=

y

r
and

∂r

∂z
=

z

r
. Thus,

∇
(
r3
)
=

∂

∂x

(
r3
)
i+

∂

∂y

(
r3
)
j +

∂

∂z

(
r3
)
k

= 3r2
∂r

∂x
i+ 3r2

∂r

∂y
j + 3r2

∂r

∂z
k
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= 3r2
x

r
i+ 3r2

y

r
j + 3r2

z

r
k

= 3r2
(
xi+ yj + zk

r

)
= 3r2

r

r

= 3rr

= 3|r|r since r = |r|.

(2) Using the method similar for Question (1), we obtain

∇(1/r) =
∂

∂x
(1/r)i+

∂

∂y
(1/r)j +

∂

∂z
(1/r)k

=

(
∂

∂r

1

r

)
∂r

∂x
i+

(
∂

∂r

1

r

)
∂r

∂y
j +

(
∂

∂r

1

r

)
∂r

∂z
k

= − 1

r2
x

r
i− 1

r2
y

r
j − 1

r2
z

r
k

=
−(xi+ yj + zk)

r3

= − r

r3

= − 1

r2
r

r

= − r̂

|r|2
,

where r̂ =
r

|r|
is an unit vector of r.

(3) Applying the chain rule provides

∇(ln r) =
∂

∂x

(
ln r
)
i+

∂

∂y

(
ln r
)
j +

∂

∂z

(
ln r
)
k

=

(
∂

∂r
ln r

)
∂r

∂x
i+

(
∂

∂r
ln r

)
∂r

∂y
j +

(
∂

∂r
ln r

)
∂r

∂z
k

=
1

r
· x
r
i+

1

r
· y
r
j +

1

r
· z
r
k

=
xi+ yj + zk

r2

=
r

r
· 1
r

=
r̂

|r|
.
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2.1 Directional Derivative

If ϕ(x, y, z) is a scalar function, then

dϕ

du
= ∇ϕ · û

is the directional derivative of ϕ(x, y, z) in the direction specified by the vector u. If θ is

the angle between ∇ϕ and u, we have

dϕ

du
= ∇ϕ · û

=
∣∣∇ϕ

∣∣∣∣û∣∣ cos θ
=
∣∣∇ϕ

∣∣ cos θ since
∣∣û∣∣ = 1.

In the above expressions, û is an unit vector of u and the operator “ · ” represents the

dot product operation. Since the maximum value of cos θ is one, and occurs when θ = 0,

we can conclude that

• At any given point,
∣∣∇ϕ

∣∣ is the maximum directional derivative ;

• At any given point, the directional derivative is greatest in the direction of ∇ϕ

(since θ = 0).

EXAMPLE

If the temperature of a body at the point (x, y, z) is

T (x, y, z) = 120− x2 + 3xyz − y2 + 4y,

determine the direction in which the temperature increases most rapidly at the point

P (1, 2, 1).

solution

The temperature increases most rapidly in the direction of ∇T . Now,

∇T =
∂T

∂x
i+

∂T

∂y
j +

∂T

∂z
k

= (−2x+ 3yz)i+ (3xz − 2y + 4)j + 3xyk,

⇒ ∇T
∣∣
P
= (4, 3, 6).
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3 Vector Fields

A general vector function has the form

v(x, y, z) = v1(x, y, z)i+ v2(x, y, z)j + v3(x, y, z)k.

If v(x, y, z) is defined at each point of a region R, then v is said to form a vector field

over R. Some examples of vector field are

• motion of a wind or fluid, since a vector (both speed and direction) can be assigned

at each point representing the velocity of a particle at the point;

• electric intensity and magnetic intensity are vector functions, which depend on time

as well as position;

• laminar flow of blood in an artery, where cylindrical layers of blood flow faster near

the centre of the artery.

3.1 Divergence of a Vector Field

Recalling that the gradient of a scalar function ϕ is defined by

∇ϕ =
∂ϕ

∂x
i+

∂ϕ

∂y
j +

∂ϕ

∂z
k.

Note that the ordinary derivative
dy

dx
can be written as

d

dx
(y), where

d

dx
is the ordinary

derivative operator. In a similar way, ∇ϕ can be interpreted as

∇ϕ =

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z︸ ︷︷ ︸
=∇

)
ϕ.

Here ∇ is called the gradient operator (or del operator),

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

and it behaves both like a “vector” and a “differential operator”.
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3.2 Divergence

The dot (scalar) product of the gradient operator ∇ and a vector function F is called the

divergence of F (or divF ). To be specific, if

F (x, y, z) = F1(x, y, z)i+ F2(x, y, z)j + F3(x, y, z)k,

then the divergence of F is defined by

divF = ∇ · F

=

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·
(
F1i+ F2j + F3k

)
=

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

Note that divF produces a scalar function as a result.

EXAMPLE

Determine the divergence of

(1) F = e3xyzi+ x sin yj +
(
z2 + 5

)
k ;

(2) F = yzi+ xzj + xyk ;

(3) F =
xi+ yj

x2 + y2
.

solution

(1) Using divF = ∇ · F gives

divF = ∇ · F

=

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·
(
e3xyzi+ x sin yj +

(
z2 + 5

)
k
)

=
∂

∂x

(
e3xyz

)
+

∂

∂y

(
x sin y

)
+

∂

∂z

(
z2 + 5

)
= 3e3xyz + x cos y + 2z.
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(2) For F = yzi+ xzj + xyk, we have

divF = ∇ · F

=

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·
(
yzi+ xzj + xyk

)
=

∂

∂x
(yz) +

∂

∂y
(xz) +

∂

∂z
(xy)

= 0 + 0 + 0

= 0.

The vector function F = yzi + xzj + xyk is said to be solenoidal, because it

has the property that divF = 0.

(3) Here, F represents the effect of a point source located at the origin in fluid

mechanics,

divF = ∇ · F

=

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·
(

x

x2 + y2
i+

y

x2 + y2
j + 0k

)
=

∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)

=
(1)
(
x2 + y2

)
− x(2x)

(x2 + y2)2
+

(1)
(
x2 + y2

)
− y(2y)

(x2 + y2)2

=

(
y2 − x2

)
+
(
x2 − y2

)
(x2 + y2)2

= 0 provided (x, y) ̸= (0, 0).

This F is also solenoidal, except at the origin.

EXAMPLE

Determine the divergence of F = r2r.

solution

Let r = xi+ yj + zk, then r = |r| =
√

x2 + y2 + z2. Then,

divF = ∇ · F

= ∇ ·
(
r2r
)

=

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·
(
xr2i+ yr2j + zr2k

)
=

∂

∂x

(
x
(
x2 + y2 + z2

))
+

∂

∂y

(
y
(
x2 + y2 + z2

))
+

∂

∂z

(
z
(
x2 + y2 + z2

))
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=
(
x2 + y2 + z2

)
+ x(2x) +

(
x2 + y2 + z2

)
+ y(2y) +

(
x2 + y2 + z2

)
+ z(2z)

= 3
(
x2 + y2 + z2

)
+ 2
(
x2 + y2 + z2

)
= 5
(
x2 + y2 + z2

)
= 5r2

= 5r · r

Alternatively, we can find divergence of F = r2r by first writing F as

F = r2xi+ r2yj + r2zk.

Divergence of F :

divF =

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·
(
r2xi+ r2yj + r2zk

)
=

∂

∂x

(
r2x
)
+

∂

∂y

(
r2y
)
+

∂

∂z

(
r2z
)
.

Appling the product rule to the above relation gives

∂

∂x

(
r2x
)
= x

∂

∂x

(
r2
)
+ r2

∂

∂x
(x)

= x(2r)
∂r

∂x
+ r2(1)

= 2xr
x

r
+ r2 since

∂r

∂x
=

∂

∂x

√
x2 + y2 + z2 =

x

r

= 2x2 + r2.

By symmetry, the other terms are

∂

∂y

(
r2y
)
= 2y2 + r2 and

∂

∂z

(
r2z
)
= 2z2 + r2.

Hence,

divF =
∂

∂x

(
r2x
)
+

∂

∂y

(
r2y
)
+

∂

∂z

(
r2z
)

=
(
2x2 + r2

)
+
(
2y2 + r2

)
+
(
2z2 + r2

)
= 2
(
x2 + y2 + z2

)
+ 3r2

= 5r2

= 5r · r.
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remarks

The last example describes a special case of the “product” rule for the divergence operator.

If ϕ(x, y, z) is a scalar function and

F (x, y, z) = F1(x, y, z)i+ F2(x, y, z)j + F3(x, y, z)k

is a general vector function, then

divϕF = ∇ · ϕF

=

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·
(
ϕF1i+ ϕF2j + ϕF3k

)
=

∂

∂x

(
ϕF1

)
+

∂

∂y

(
ϕF2

)
+

∂

∂z

(
ϕF3

)
=

(
ϕ
∂F1

∂x
+ F1

∂ϕ

∂x

)
+

(
ϕ
∂F2

∂y
+ F2

∂ϕ

∂y

)
+

(
ϕ
∂F3

∂z
+ F3

∂ϕ

∂z

)
=

(
F1

∂ϕ

∂x
+ F2

∂ϕ

∂y
+ F3

∂ϕ

∂z︸ ︷︷ ︸
= F ·∇ϕ

)
+ ϕ

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z︸ ︷︷ ︸
= ϕ∇·F

)

= F ·∇ϕ+ ϕ∇ · F .

For example, in the last example, let ϕ = r2 (scalar function) and F = r. Since the

divergence is a derivative operator, rules of differentiation must be obeyed. Thus,

divϕF ̸= ϕ divF ,

except when ϕ is constant (since ∇ϕ = 0).

3.3 Physical Interpretation

In the modelling of fluid flow, we let

v = u(x, y, z)i+ v(x, y, z)j + w(x, y, z)k

be the steady fluid velocity at any point P (x, y, z). Then, for per unit volume and per

unit time at point P ,

• divv represents the net volume outflow ;

• div (ρv) represents the net mass outflow, where ρ(x, y, z) is the fluid density.

Considering the net mass outflow through a small box of infinitesimal length ∆x, ∆y and

∆z (control volume) containing point P in the x-direction as shown below,
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P

∆x

∆y

∆z

x−
1

2
∆x x + 1

2
∆x

x

y
z

we have

∆Mx ≈MxOUT
−MxIN

≈ ρu
∣∣
x+∆x

2

(∆y∆z)− ρu
∣∣
x−∆x

2

(∆y∆z)

≈

(
ρu
∣∣
x+∆x

2

− ρu
∣∣
x−∆x

2

∆x

)
(∆x∆y∆z)

→ ∂

∂x
(ρu)(∆x∆y∆z) as ∆x→ 0.

Combining this with the net mass outflow in the y and z-direction, and letting

∆V = ∆x∆y∆z,

we have the total mass outflow per unit time,

∆M = ∆Mx +∆My +∆Mz

→

(
∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw)︸ ︷︷ ︸

=∇·(ρv)

)
∆V as (∆x,∆y,∆z)→ 0.

Thus, the net mass outflow per unit time, per unit volume at P is represented by

∆M

∆V
= ∇ · (ρv)

= div (ρv).

In steady case, provided there is no net change in mass at P , that is ∆M = 0, conservation

of mass requires that

div (ρv) = 0.

If the fluid is incompressible (ρ is constant), this relation reduces to

divv = 0 ←− v is solenoidal for incompressible fluid!
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4 Curl of a Vector Field

The cross (vector) product of ∇ and a vector function F is called the curl of F (or

curlF ). If

F (x, y, z) = F1(x, y, z)i+ F2(x, y, z)j + F3(x, y, z)k,

then the curl of F is defined by

curlF = ∇× F

=

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i−

(
∂F3

∂x
− ∂F1

∂z

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k.

Note that curlF produces a vector function as a result.

EXAMPLE

Determine the curl of

(1) F = 2xyi+ yz2j + x3zk ;

(2) F = yzi+ xzj + xyk ;

(3) F = r2r.

solution

(1) Giving F = 2xyi+ yz2j + x3zk, curl of F is

curlF = ∇× F

=

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2xy yz2 x3z

∣∣∣∣∣∣∣∣
= i

∣∣∣∣∣ ∂
∂y

∂
∂z

yz2 x3z

∣∣∣∣∣− j

∣∣∣∣∣ ∂
∂x

∂
∂z

2xy x3z

∣∣∣∣∣+ k

∣∣∣∣∣ ∂
∂x

∂
∂y

2xy yz2

∣∣∣∣∣
= (0− 2yz)i− (3x2z − 0)j + (0− 2x)k

= −2yzi− 3x2zj − 2xk.
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(2) Giving F = yzi+ xzj + xyk, curl of F is

curlF = ∇× F

=

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

yz xz xy

∣∣∣∣∣∣∣∣
= i

∣∣∣∣∣ ∂
∂y

∂
∂z

xz xy

∣∣∣∣∣− j

∣∣∣∣∣ ∂
∂x

∂
∂z

yz xy

∣∣∣∣∣+ k

∣∣∣∣∣ ∂
∂x

∂
∂y

yz xz

∣∣∣∣∣
= (x− x)i− (y − y)j + (z − z)k

= 0i+ 0j + 0k

= 0.

This is a irrotational vector field, since curl of F is a zero vector; that is,

∇× F = 0.

(3) Giving F = r2r = r2xi+ r2yj + r2zk, curl of F is

curlF = ∇× F

=

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

r2x r2y r2z

∣∣∣∣∣∣∣∣
= i

∣∣∣∣∣ ∂
∂y

∂
∂z

r2y r2z

∣∣∣∣∣− j

∣∣∣∣∣ ∂
∂x

∂
∂z

r2x r2z

∣∣∣∣∣+ k

∣∣∣∣∣ ∂
∂x

∂
∂y

r2x r2y

∣∣∣∣∣
= (2yz − 2zy)i− (2xz − 2zx)j + (2xy − 2yx)k

= 0.

This F is also irrotational.
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4.1 Physical Interpretation

The curl of a vector function v is related to the amount of rotation associated with v.

Consider a particle P rotating about O in the xy-plane at constant radius a and angular

speed ω (rad/sec) as shown below,

P

r

x

y

z

O

a

The angular velocity of P is ω = ωk. The position of P is given by

r(t) = a cos(ωt)︸ ︷︷ ︸
=x

i+ a sin(ωt)︸ ︷︷ ︸
= y

j + 0︸︷︷︸
= z

k

from which we obtain the velocity of P as

v(x, y, z) =
dr

dt

= −aω sin(ωt)i+ aω cos(ωt)j

= −ωyi+ ωxj.

Now, the curl of v is given by

curlv = ∇× v

=

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

−ωy ωx 0

∣∣∣∣∣∣∣∣
= i

∣∣∣∣∣ ∂
∂y

∂
∂z

ωx 0

∣∣∣∣∣− j

∣∣∣∣∣ ∂
∂x

∂
∂z

−ωy 0

∣∣∣∣∣+ k

∣∣∣∣∣ ∂
∂x

∂
∂y

−ωy ωx

∣∣∣∣∣
= 0i− 0j + (ω + ω)k

= 2ωk

= 2ω.
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The result, curlv = ∇×v = 2ω indicates that curlv is twice the angular velocity vector.

In general, curlv measures the amount of rotation or vorticity of v. Hence, the term

irrotational is used for vector fields having curlv = 0.

5 Identities Involving Divergence and Curl

Let F (x, y, z) and G(x, y, z) be vector functions, and ϕ(x, y, z) a scalar function. Assum-

ing all of the derivatives implied below exist, we have the following indentities involving

divergence and curl operations,

(1) ∇ ·∇× F = 0 ;

(2) ∇×∇ϕ = 0 ;

(3) ∇ · (F +G) = ∇ · F +∇ ·G ;

(4) ∇× (F +G) = ∇× F +∇×G ;

(5) ∇ · ϕF = ϕ∇ · F + F ·∇ϕ ;

(6) ∇× ϕF = ϕ∇× F +∇ϕ× F ;

(7) ∇ · (F ×G) = G ·∇× F − F ·∇×G ;

(8) ∇× (F ×G) = (G ·∇)F −G(∇ · F )− (F ·∇)G+ F (∇ ·G) ;

(9) ∇(F ·G) = (G ·∇)F + (F ·∇)G+G× (∇× F ) + F × (∇×G) ;

(10) ∇ ·∇ϕ = ∇2ϕ (by definition) ;

(11) ∇× (∇× F ) = ∇(∇ · F )−∇2F .

Note that ∇2 = ∇ ·∇ is a scalar operator known as a Laplacian operator,

∇2 = ∇ · ∇

=

(
∂

∂x
i+

∂

∂y
j +

∂

∂z
k

)
·

(
∂

∂x
i+

∂

∂y
j +

∂

∂z
k

)

=
∂

∂x

∂

∂x
+

∂

∂y

∂

∂y
+

∂

∂z

∂

∂z

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.
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EXAMPLE

Verify Identity (1): ∇ ·∇× F = 0 (divergence of the curl of a vector function is

always zero).

solution

Let

F (x, y, z) = F1(x, y, z)i+ F2(x, y, z)j + F3(x, y, z)k,

then

curlF = ∇× F

=

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣∣
= i

(
∂F3

∂y
− ∂F2

∂z

)
− j

(
∂F3

∂x
− ∂F1

∂z

)
+ k

(
∂F2

∂x
− ∂F1

∂y

)
,

⇒ div curlF = ∇ ·∇× F

=
∂

∂x

(
∂F3

∂y
− ∂F2

∂z

)
− ∂

∂y

(
∂F3

∂x
− ∂F1

∂z

)
+

∂

∂z

(
∂F2

∂x
− ∂F1

∂y

)
=

∂2F3

∂x∂y
− ∂2F2

∂x∂z
− ∂2F3

∂y∂x
+

∂2F1

∂y∂z
+

∂2F2

∂z∂x
− ∂2F1

∂z∂y

= 0,

assuming pairs of mixed partial derivatives are equal.

EXAMPLE

Verify Identity (2): ∇×∇ϕ = 0 (curl of the gradient of a scalar function is always

zero).

solution

If ϕ(x, y, z) is a scalar function, then

∇ϕ =
∂ϕ

∂x
i+

∂ϕ

∂y
j +

∂ϕ

∂z
k,

and

curl∇ϕ = ∇×∇ϕ

=

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

∣∣∣∣∣∣∣∣
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= i

(
∂2ϕ

∂y∂z
− ∂2ϕ

∂z∂y

)
− j

(
∂2ϕ

∂x∂z
− ∂2ϕ

∂z∂x

)
+ k

(
∂2ϕ

∂x∂y
− ∂2ϕ

∂y∂x

)
= 0,

assuming pairs of mixed partial derivatives are equal. Thus, if F is the gradient of

a scalar function, F = ∇ϕ, then ∇× F = 0 (irrotational).

6 Scalar Potential

6.1 Existence of a Scalar Potential

Suppose that F (x, y, z) is a vector function which is continuous in a simply connected

region R in space. Then the following are equivalent (see Identity 2):

• ∇× F = 0 (irrotational) ;

• F = ∇ϕ for some scalar function ϕ(x, y, z).

That is, if

∇× F = 0,

then there will exist a scalar potential function ϕ associated with F , and F is said to be

conservative or irrotational in the region R.

If a scalar potential for F exists, it means that the information contained in the three

components of F actually derives from a single scalar function ϕ. This property leads

to significant saving in computational cost for certain problems. For example, potential

flows over an aircraft wing in subsonic, transonic and supersonic speed regime.

6.2 Finding the Scalar Potential

To find the scalar potential associated with F , we must first check that

curlF = ∇× F = 0,

and then integrate the three equations represented by

∇ϕ = F

to find a consistent solution for ϕ(x, y, z).
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EXAMPLE

Verify that the vector field

F = (2x+ sin y)i+
(
x cos y + z2

)
j + 2yzk

is conservative, and find a scalar potential ϕ(x, y, z).

solution

Verifying curlF = 0:

∇× F =

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2x+ sin y x cos y + z2 2yz

∣∣∣∣∣∣∣∣
= i

∣∣∣∣∣ ∂
∂y

∂
∂z

x cos y + z2 2yz

∣∣∣∣∣− j

∣∣∣∣∣ ∂
∂x

∂
∂z

2x+ sin y 2yz

∣∣∣∣∣+ k

∣∣∣∣∣ ∂
∂x

∂
∂y

2x+ sin y x cos y + z2

∣∣∣∣∣
= (2z − 2z)i− (0− 0)j + (cos y − cos y)k

= 0.

Since F is conservative, ϕ(x, y, z) exists. Now, equate ∇ϕ to F :

∂ϕ

∂x
= 2x+ sin y,

∂ϕ

∂y
= x cos y + z2,

∂ϕ

∂z
= 2yz.

Integrating the above relations provides

ϕ = x2 + x sin y + f(y, z),

ϕ = x sin y + yz2 + g(x, z),

ϕ = yz2 + h(x, y),

where f , g and h are arbitrary functions. A consistent solution for ϕ cannot be

obtained without suitably choosing these functions. Comparing the three equations,

we can see that a consistent solution is

ϕ(x, y, z) = x2 + x sin y + yz2 + c,

where c is an arbitrary constant.
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EXAMPLE

Verify that the vector field,

F = (y + z)i+ (z + x)j + (x+ y)k,

is conservative, and find a scalar potential ϕ.

solution

The vector field F is conservative if curlF = 0 :

∇× F =

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y + z z + x x+ y

∣∣∣∣∣∣∣∣
= (1− 1)i− (1− 1)j + (1− 1)k

= 0.

Equating ∇ϕ to F :

∂ϕ

∂x
= y + z,

∂ϕ

∂y
= z + x,

∂ϕ

∂z
= x+ y.

There are two ways of proceeding from here.

method 1:

As usual, we integrate to get

ϕ = xy + xz + f(y, z),

ϕ = yz + xy + g(x, z),

ϕ = xz + yz + h(x, y).

By inspection, a consistent solution is

ϕ(x, y, z) = xy + xz + yz + c,

where c is an arbitrary constant.

method 2:

Integrating the first equation, ∂ϕ
∂x

= y + z, gives

ϕ = xy + xz + f(y, z),
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where f(y, z) is an arbitrary function not depending on the variable x. That is,
∂f
∂x

= 0. Differentiating this relation with respect to the variable y provides

∂ϕ

∂y
= x+

∂f

∂y
.

Comparing this equation with the second equation yields

∂ϕ

∂y
= z + x = x+

∂f

∂y
⇒ z =

∂f

∂y
,

which means that f(y, z) = yz + g(z). Thus,

ϕ = xy + xz + yz + g(z).

Differentiating this relation with respect to z gives

∂ϕ

∂z
= x+ y +

dg

dz
,

which on comparison with the third equation yields

∂ϕ

∂z
= x+ y +

dg

dz
= x+ y ⇒ dg

dz
= 0.

That is,

g = c (constant).

Finally, the solution is

ϕ(x, y, z) = xy + xz + yz + c.

6.3 Laplace’s Equation

If F is a vector function which is both irrotational

∇× F = 0 with F = ∇ϕ,

and solenoidal,

∇ · F = 0,

then the associated scalar potential function ϕ satisfies

∇ · F = ∇ ·∇ϕ

= ∇2ϕ

=
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2

= 0.

This is the famous Laplace’s equation. Any function ϕ satisfies Laplace’s equation is a

harmonic function.
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EXAMPLE

Find a scalar function f(x, y, z) such that the vector function,

F = (2z + 6xy)i+ f(x, y, z)j + (2x− 6yz)k,

is both irrotational and solenoidal. Find a scalar potential ϕ(x, y, z) such that

F = ∇ϕ.

solution

Requiring F to be solenoidal,

divF = 6y +
∂f

∂y
− 6y =

∂f

∂y
= 0.

Hence, f must be a function of x and z only. Next, requiring F to be irrotational,

∇× F =

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2z + 6xy f(x, z) 2x− 6yz

∣∣∣∣∣∣∣∣
= i

(
−6z − ∂f

∂z

)
− j
(
2− 2

)
+ k

(
∂f

∂x
− 6x

)
= 0.

Thus,
∂f

∂x
= 6x and

∂f

∂z
= −6z. Integrating these two relations provides

f(x, z) = 3x2 + g(z),

f(x, z) = −3z2 + h(x).

Thus, f = 3x2−3z2+c0, where c0 is a constant. For convenience, we can set c0 = 0,

hence

F = (2z + 6xy)i+
(
3x2 − 3z2

)
j + (2x− 6yz)k.

Equating ∇ϕ to F , we have that

∂ϕ

∂x
= 2z + 6xy,

∂ϕ

∂y
= 3x2 − 3z2,

∂ϕ

∂z
= 2x− 6yz.

Therefore,

ϕ = 2xz + 3x2y + f1(y, z),

ϕ = 3x2y − 3yz2 + f2(x, z),

ϕ = 2xz − 3yz2 + f3(x, y).
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A consistent solution for ϕ is

ϕ(x, y, z) = 2xz + 3x2y − 3yz2 + c,

where c is a constant.

6.4 Physical Interpretation

If F (x, y, z) represents a force field, then the scalar potential ϕ(x, y, z) has the dimensions

of energy, and is related to the potential energy V (x, y, z) by

V = −ϕ.

For example, the force due to gravity acting on a body of mass m near to the earth’s

surface is governed by

F = −mgk.

Since F is constant, it is clear that curlF = 0, so that a scalar potential ϕ exists. Equating

∇ϕ to F , we have
∂ϕ

∂x
= 0,

∂ϕ

∂y
= 0 and

∂ϕ

∂z
= −mg.

A consistent solution is

ϕ(x, y, z) = −mgz + constant.

Since the gravitational potential energy of such a body is given by V = mgz + c, then

V = −ϕ (up to an additive constant).



24 Vector Calculus

7 Review Questions

[1] (a) Find the divergence and curl of the vector field,

V (x, y, z) = 2xeyzi+
(
x2zeyz + 3y2z

)
j +

(
y3 + x2yeyz

)
k.

(b) Is V solenoidal? Is V irrotational? Would you expect a scalar potential

function ϕ to exist for V ? Briefly explain each of your answers.

[2] (a) Verify that the following vector field,

F (x, y, z) = 2x sin(y+ z)i+

(
x2 cos(y+ z)+

z3
√
y

)
j+

(
x2 cos(y+ z)+6z2

√
y
)
k

is irrotational.

(b) Find a scalar potential function for this field.

[3] (a) Verify that the vector field,

F (x, y, z) =

(
y

z
+ x2

)
i+

(
x

z
− sin y

)
j +

(
cos z − xy

z2

)
k,

is irrotational.

(b) Find a scalar potential function for this field.

[4] The vector field G is defined by

G(x, y, z) =
(
3x2 − 3y2

)
i+

(
12y2z − 6xy − 4z3

)
j +

(
4y3 − 12yz2

)
k.

(a) Determine ∇ ·G.

(b) Determine ∇×G.

(c) Is G solenoidal? is G irrotational?

[5] Determine the unit vector which is normal to the surface,

z = 5−
√

x2 + y2,

at the point P (4, 3, 0) and is directed away from the origin.

[6] Find the directional derivative of ϕ = z4+x2y3 at the point (2,−1, 1) in the direction

6i+ 2j + 3k.

[7] Consider the vector field F defined by

F =
(
1 + 2xyz3

)
i+

(
2y + x2z3

)
j +

(
αx2yz2

)
k.
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(a) Determine the value of α for which F is a conservative field.

(b) Assuming α takes the value found in part (a), determine a scalar potential ϕ

for F ; that is, determine a scalar field ϕ such that F = ∇ϕ.

[8] If r = xi+ yj + zk, so that |r| = r =
√

x2 + y2 + z2 :

(a) Find
∂r

∂x
, and write the answer in terms of r and x. Hence, write down

∂r

∂y
and

∂r

∂z
.

(b) Using the results obtained in part (a), or otherwise, evaluate div (r/r).

[9] Find a unit normal vector to the paraboloid defined by z(x, y) = 4x2 + y2 at the

point (2, 3, 25).

[10] The vector field G and the scalar field ϕ are defined by

G =
(
4zy2 + 2x− 5

)
i+

(
2z2 − 3x+ y

)2
j +

(
3xy + 2z

)
k

and

ϕ(x, y, z) = xz2 − 4xy2,

respectively. Compute

(a) ∇ ·G ;

(b) ∇×G ;

(c) ∇ϕ ;

(d) curl gradϕ.

[11] Consider the vector field H defined by

H = (2 + 2xyz)i+
(
4 + x2z

)
j +

(
2z + x2y

)
k.

(a) Show that H is a conservative field.

(b) Determine a scalar potential ϕ(x, y, z) for H ; that is, determine a scalar field

ϕ such that H = ∇ϕ.

(c) Determine curl (ϕH), where H and ϕ are as above.

Hint: Use the identity,

curl
(
ϕH

)
= ϕ∇×H +∇ϕ×H .

[12] If r = xi+ yj + zk, so that r =
√

x2 + y2 + z2 :
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(a) Show that ∇r4 = 4r2r ;

(b) Using the identity,

div (ϕF ) = ϕ∇ · F +∇ϕ · F ,

together with the result from part (a), show that

div
(
r4r
)
= 7r4.

[13] A vector field A is said to be a vector potential for a vector field V if

V = ∇×A.

Verify that the vector field,

A(x, y, z) = x2y2ezi+ xyezj + x2y3z4k

is a vector potential for the vector field,

V (x, y, z) =
(
3x2y2z4 − xyez

)
i+

(
x2y2ez − 2xy3z4

)
j +

(
yez − 2x2yez

)
k.
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8 Answers to Review Questions

[1] (a) divV = ∇ · V = 2eyz +
(
x2z2eyz + 6yz

)
+ x2y2eyz.

curlV = ∇× V =
(
3y2 + x2eyz(1 + yz)

)
i.

(b) V is not solenoidal, since divV ̸= 0. V is not irrotational, since curlV ̸= 0.

Since curlV is not zero, a scalar potential function ϕ(x, y, z) will not exist.

[2] (a) curlF :

∇× F =

(
−x2 sin(y + z) +

3z2
√
y
+ x2 sin(y + z)− 3z2

√
y

)
i

−
(
2x cos(y + z)− 2x cos(y + z)

)
j +

(
2x cos(y + z)− 2x cos(y + z)

)
k

= 0.

(b) ϕ(x, y, z) = x2 sin(y + z) + 2z3
√
y + c, where c is a constant.

[3] (a) ∇F =

(
− x

z2
+

x

z2

)
i−

(
− y

z2
+

y

z2

)
j +

(
1

z
− 1

z

)
k = 0

(b) ϕ(x, y, z) =
xy

z
+

x3

3
+ cos y + sin z + c, where c is a constant.

[4] (a) ∇ ·G = 0

(b) ∇×G = 0

(c) G is solenoidal and irrotational.

[5] Let F (x, y, z) = x2 + y2 − z2 + 10z − 25. Normal vector is

n = ∇F

= 2xi+ 2yj + (10− 2z)k

= 8i+ 6j + 10k at point P.

Thus, n̂ =
n

|n|
=

1√
50

(4i+ 3j + 5k).

[6] ∇ϕ = 2xy3i+ 3x2y2j + 4z3k = −4i+ 12j + 4k at point (2,−1, 1).
Directional derivative is ∇ϕ · û = 12/7.

[7] (a) Curl of F :

∇×F =
(
αx2z2−3x2z2

)
i−
(
2αxyz2−6xyz2

)
j+
(
2xz3−2xz3

)
k = 0 if α = 3.

(b)
∂ϕ

∂x
= 1 + 2xyz3;

∂ϕ

∂y
= 2y + x2z3;

∂ϕ

∂z
= 3x2yz2.

Scalar potential function, ϕ(x, y, z) = x+ y2+x2yz3+ c, where c is a constant.

[8] (a)
∂r

∂x
=

x

r
;

∂r

∂y
=

y

r
;

∂r

∂z
=

z

r
.
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(b) Divergence of r/r:

div (r/r) = ∇ ·
(
xi+ yj + zk

r

)
=

∂

∂x

(
x

r

)
+

∂

∂y

(
y

r

)
+

∂

∂z

(
z

r

)
=

r2 − x2

r3
+

r2 − y2

r3
+

r2 − z2

r3

=
3r2 − r2

r3

=
2

r
.

[9] Let ϕ = 4x2 + y2 − z.

Normal vector: n = ∇ϕ = 16i+ 6j − k at point (2, 3, 25).

Unit normal vector: n̂ = ±(16, 6,−1)√
293

.

[10] (a) ∇ ·G = 4 + 2
(
2z2 − 3x+ y

)
(b) ∇×G =

(
3x−16z3+24xz−8yz

)
i−
(
3y−4y2

)
j+
(
−12z2+18x−6y−8yz

)
k

(c) ∇ϕ =
(
z2 − 4y2

)
i+

(
−8xy

)
j +

(
2xz
)
k

(d) curl gradϕ = ∇×∇ = 0

[11] (a) ∇×H = 0

(b)
∂ϕ

∂x
= 2 + 2xyz ;

∂ϕ

∂y
= 4 + x2z ;

∂ϕ

∂z
= 2z + x2y.

Scalar potential function: ϕ(x, y, z) = 2x + 4y + z2 + x2yz + c, where c is a

constant.

(c) curl
(
ϕH

)
= ϕ∇×H +∇ϕ×H = ϕ0+H ×H = 0.

[12] (a) ∇r4 = 4r2xi+ 4r2yj + 4r2zk = 4r2r.

(b) div
(
r4r
)
= r4∇ · r +∇r4 · r = 3r4 + 4r2r · r = 7r4.

[13] Not available.


